Defect Structures in the Brannerite-Type Vanadates: V. Phase Diagram of the Pseudo-Ternary $\mathbf{M n V}_{\mathbf{2}} \mathrm{O}_{6}-\mathrm{LiVMoO}_{\mathbf{6}}-\mathrm{MoO}_{3}$ System Comprising the $\mathrm{Mn}_{1-x-y} \mathrm{Li}_{y} \mathrm{O}_{x} \mathbf{V}_{2-2 x-y} \mathrm{Mo}_{2 x+y} \mathbf{O}_{6}$ Solid Solution

JACEK ZIÓŁKOWSKI,* KRYSTYNA KRUPA, and KRZYSZTOF MOCAŁA
Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239 Krak6w, ul. Niezapominajek, Poland

Received August 4, 1982; in revised form January 17, 1983

Abstract

The phase diagram of the pseudo-ternary $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ system has been determined with DTA and X-ray phase analysis. Its outstanding feature is the very large range of stability of the quaternary solid solution α-ML \emptyset described by the formula $\mathrm{Mn}_{1-x-y} \mathrm{Li}_{y} \emptyset_{x} \mathrm{~V}_{2-2 x-y} \mathrm{Mo}_{2 x+y} \mathrm{O}_{6}(\emptyset=$ cation vacancy), and crystallizing in the monoclinic brannerite-type structure. In this solution y may vary between 0 and 1, which corresponds to the entire miscibility of $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and $\mathrm{LiVMoO}_{6} ; x$ may change between 0 and $x_{\text {max }}$ depending on y (if, e.g., y equals $0.00,0.40,0.84$, or $1.00, x_{\text {max }}$ is $0.45,0.28,0.16$, or 0.00 , respectively). Depending on composition, $\alpha-\mathrm{ML} \emptyset$ is stable up to $540-710^{\circ} \mathrm{C}$. Other features of the diagram, including the liquidus, are described in detail. The dependence of unit cell dimensions on composition of $\alpha-\mathrm{ML} \emptyset$ has been determined. On passing from $\mathrm{MnV}_{2} \mathrm{O}_{6}$ to LiVMoO_{6}, the lattice parameter b and unit cell volume increase, c and $c \sin \beta$ decrease, and a changes insignificantly. These changes are interpreted by taking into account the ionic radii of the components and the specific details of the brannerite-type structure. ML \emptyset solid solutions were prepared using the amorphous citrate precursor method.

Introduction

For about thirty years oxide solid solutions have been the object of wide and everincreasing interest from the viewpoint of both fundamental and applied science (materials chemistry, catalysis, etc.). This is due to the possibility of an infinite modification of their physical and chemical properties. The laws governing their formation have not, however, been fully established. This is so especially for the multicomponent oxide solutions of the oxysalt-type matrix.

[^0]In the present series of investigations, we have focused our attention on the solid solutions of MoO_{3} in the matrices of metal vanadates $\mathrm{AV}_{2} \mathrm{O}_{6}$ crystallizing in the bran-nerite-type structure (1-4). So far we have indicated the existence of solid solutions described by the formulas

$$
\mathrm{Mn}_{1-x} \emptyset_{x} \mathrm{~V}_{2-2 x} \mathrm{Mo}_{2 x} \mathrm{O}_{6}(0 \leq x \leq 0.45)(1)
$$

and

$$
\begin{aligned}
& \mathrm{Cu}_{1-x-y}^{2+} \mathrm{Cu}_{y}^{1+} \emptyset_{x} \mathrm{~V}_{2-2 x-y} \mathrm{Mo}_{2 x+y} \mathrm{O}_{6} \\
& \quad(0 \leq x \leq 0.23 ; 0 \leq y \leq 0.27)(3) .
\end{aligned}
$$

In these solutions Mo^{6+} ions are substituted at random for V^{5+} ions, and charge compensation is accomplished by creation of an
equivalent number of cationic vacancies \emptyset at bivalent metal sites or by partial reduction. On the other hand, Galy and Darriet $(5,6)$ have shown that the A position in the brannerite-type matrix may be entirely filled up with typically monovalent cation (e.g., LiVMoO_{6}); an increase of the Mo^{6+} V^{5+} ratio results also in a deficiency of monovalent cation A (e.g., $\mathrm{Li}_{1-x} \emptyset_{x} \mathrm{~V}_{1-x}$ $\mathrm{Mo}_{1+x} \mathrm{O}_{6}$). The above-mentioned facts enabled us to set up a hypothesis concerning the possible existence of quaternary solid solution described by the formula $\mathbf{M n}_{1-x-y}$ $\mathrm{Li}_{y} \emptyset_{x} \mathbf{V}_{2-2 x-y} \mathrm{Mo}_{2 x+y} \mathrm{O}_{6}$ (further labeled as MLØ). This hypothesis is confirmed in the present paper.

The above-quoted $\mathrm{Mn}_{1-x} \emptyset_{x} \mathrm{~V}_{2-22} \mathrm{Mo}_{2 x} \mathrm{O}_{6}$ (MØ) and $\mathrm{Li}_{1-x} \emptyset_{x} \mathrm{~V}_{1-x} \mathrm{Mo}_{1+x} \mathrm{O}_{6}(\mathrm{~L} \emptyset)$ solid solutions are special examples of the general ML \emptyset formula at $y=0$ and at $x+y=1$, respectively, and belong correspondingly to the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ and $\mathrm{LiVMoO}{ }_{6}$ MoO_{3} subsystems. Similarly, at $x=0$ one arrives at $\mathrm{Mn}_{1-y} \mathrm{Li}_{\mathrm{y}} \mathrm{V}_{2-y} \mathrm{Mo}_{y} \mathrm{O}_{6}$ (ML), which may be regarded as a solid solution made of ($1-y$) $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and $y \mathrm{LiVMoO}_{6}$. The composition of MLØ thus falls within the pseudo-ternary $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ section of the quaternary, tetrahedral composition diagram $\mathrm{MnO}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}-\mathrm{Li}_{2} \mathrm{O}$,

shown in Fig. 1. The phase diagram of the above-mentioned pseudo-ternary system is resolved in the present paper, and (among others) the range of stability of α-MLØ solid solution is determined.
It has been found convenient to represent the composition of the above-mentioned pseudo-ternary system by means of the equilateral triangle configuration, formally using the MLØ formula over its whole area. Consequently, the composition parameters $x($ or $X=100 x)$ and $y($ or $Y=100 y)$ are used to express the composition along $\mathrm{MnV}_{2} \mathrm{O}_{6}$ MoO_{3} and $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and LiVMoO_{6} arms of the triangle, respectively. The properties of such a diagram are shown in Fig. 1(b). In particular, the series of samples of constant concentration of $\mathrm{Mn}, \mathrm{Li}, \emptyset, \mathrm{V}$, and Mo can be easily indicated as lying on the respective straight lines.

Experimental

The composition of all samples prepared and studied with DTA and X-ray analysis is marked in Fig. 3. They were synthesized by the amorphous citrate precursor method (7), adapted empirically to the present system. The method seems to be especially convenient for multicomponent systems, as

Fig. 1. (a) Location of the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ triangle in the $\mathrm{MnO}-\mathrm{Li}_{2} \mathrm{O}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ composition tetrahedron. (b) Properties of the equilateral composition triangle $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$. Arrows mark the direction in which the concentration of the respective component increases.
it assures very good homogenization. The starting materials were $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{MnCO}_{3}$, $\mathrm{NH}_{4} \mathrm{VO}_{3}$, $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \quad 0.1 \mathrm{M}$ $\mathrm{HNO}_{3}, 2.5 \mathrm{M}$ citric acid (CA), and 0.1 M ammonia, all of p.a. grade. $\mathrm{Li}, \mathrm{Mn}, \mathrm{V}$, and Mo-containing salts were always weighted in the appropriate amounts, and CA was titrated in the quantity corresponding to the formation of lithium, manganese, or ammonium citrates.
$\mathrm{Li}_{2} \mathrm{CO}_{3}$ and MnCO_{3} were first dissolved in HNO_{3} taken in a little excess to the stoichiometry, CA was added and the solution was neutralized with ammonia ($\mathrm{pH} \approx 7$). The respective portions of ammonium vanadate and molybdate were added separately and dissolved on stirring at $70^{\circ} \mathrm{C}$. Then water was entirely evaporated from the solution at $90^{\circ} \mathrm{C}$, at pressures achieved with a water pump. The glasslike, amorphous, solid product was ground and heated in a stream of air at temperature increasing by 50° every 30 min , up to $550^{\circ} \mathrm{C}$. The final thermal treatment consisted of annealing the samples in air at $550-600^{\circ} \mathrm{C}$ for 20 hr . Samples exhibiting the presence of MoO_{3} in addition to the brannerite-type phase via X-ray analysis were additionally heated at the same temperature up to 100 hr (and again periodically tested with X-ray analysis), to be sure that real equilibrium had been reached. After annealing, samples were quenched to room temperature to freeze in the high temperature equilibrium state.
As for the selected preparations belonging to the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ arm of the diagram, no differences were found between the properties of samples of the same composition prepared with presently applied citrate precursor method, as compared to solid state synthesis, employed in (I). All data concerning the samples of this arm are thus quoted from Ref. (1).
Among samples studied in this work the most interesting are those which fall in the stability range of the MLØ solid solution
(cf. Fig. 3). Their color changes with composition. $\mathrm{MnV}_{2} \mathrm{O}_{6}$ is brownish-black; with increasing x in the $\mathrm{M} \emptyset$ series up to $x=0.45$ samples become brown or brownish-red. The same color changes occur with increasing y in the ML \emptyset series up to about $y=0.7$; however, these samples are somewhat paler compared to the former ones. At higher y color changes through green to yellow, characteristic of pure LiVMoO_{6}.
The X-ray diffraction patterns were obtained with DRON-2 X-ray diffractometer using $\mathrm{CuK} \alpha$ radiation and an internal standard of $\mathrm{Al}\left(a=4.0492 \AA\right.$ at $\left.25^{\circ} \mathrm{C}\right)$. The phase identification was based upon the published patterns of $\mathrm{MnV}_{2} \mathrm{O}_{6}$ (1), $\mathrm{LiVMoO}_{6}(6)$, and $\mathrm{MoO}_{3}(8)$. The cell dimensions were refined by the least-squares method. Some details of the phase diagram described in the further paragraphs of this paper were confirmed by analysis in hightemperature X-ray camera. In this case the temperature was increased in the interesting range by 5 or 10° every 60 min .
DTA curves were recorded with a SE TARAM M5 microanalyzer in a stream of purified air, at a heating rate of $10 \% \mathrm{~min}$. $\mathrm{Al}_{2} \mathrm{O}_{3}$, preheated at $1500^{\circ} \mathrm{C}$ for 24 hr , and Brazilian quartz (transition temperature $573^{\circ} \mathrm{C}$) were used as references. A specially constructed sample holder was used, as described in detail in (l). On constructing the phase diagram, the onset temperatures (determined with tangent method) and last peak temperatures were taken to determine the solidus and liquidus lines, respectively, the accuracy being $\pm 2^{\circ} \mathrm{C}$. The temperatures of usually overlapping, intermediary effects were estimated as exactly as possible, with an accuracy which should not be less than $\pm 5^{\circ} \mathrm{C}$. The DTA curves recorded on cooling ($10 \% \mathrm{~min}$) indicated considerable overcooling; thus, they were not directly useful in constructing the phase diagrams. However, as the peaks were well separated, the cooling runs were frequently used to control the peak number. This was especially
useful in locating the peritectic lines (cf. Figs. 5-7, temperature range above $760^{\circ} \mathrm{C}$). Tentative details of the phase diagrams are always indicated with dotted lines.

The magnetic susceptibility was measured between 120 and 290 K using the Gouy method as described in Refs. (3, 9, 10) using tris(ethylenediamine) nickel(II) thiosulfate as a calibration standard $\left(10^{6} \chi_{g}\right.$ $=10.82$ at $25^{\circ} \mathrm{C}$) (11). The susceptibility, which was found to be independent of the field strength, was determined at $H=2$ to 4 kOe . The correction for the susceptibility of the glass tube was determined experimentally, and the diamagnetic corrections were calculated according to Klemm's method (12). The reproducibility of the magnetic moment determination was estimated to be within $\pm 0.1 \mu_{\mathrm{B}}$.

Elemental analysis was carried out using atomic absorption spectroscopy (Pye Unicam FP 90 spectrometer) (Mn, V, Mo) or classical flame photometry (Li), the accuracy being $\pm 1 \%$ in the absolute weight of the metals.

Results and Discussion

(i) Verification of the ML \emptyset Formula

In analogy to the previously studied systems, the composition of MLØ solid solution in the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ system could be written as

$$
\begin{equation*}
\mathrm{Mn}_{1-x-y}^{2+} \mathrm{Li}_{y}^{1+} \emptyset_{x} \mathrm{~V}_{2-2 x-y}^{5+} \mathrm{Mo}_{2 x+y}^{6+} \mathrm{O}_{6} \tag{1}
\end{equation*}
$$

However, charge compensation could also occur by reduction of V^{5+} to V^{4+} or Mo^{6+} to Mo^{5+}. In the latter cases this would lead to the formulas

$$
\begin{equation*}
\mathrm{Mn}_{1-y}^{2+} \mathrm{Li}_{y}^{1+} \mathbf{V}_{2-2 x-y}^{5+} \mathrm{Mo}_{y}^{6+} \mathrm{Mo}_{2 x}^{5+} \mathrm{O}_{6} \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathbf{M n}_{1-y}^{2+} \mathrm{Li}_{y}^{1+} \mathbf{V}_{2-4 x-y}^{5+} \mathbf{V}_{2 x}^{4+} \mathbf{M o}_{2 x+y}^{6+} \mathrm{O}_{6} \tag{3}
\end{equation*}
$$

To resolve this question elemental analysis and magnetic susceptibility measurements
were executed for four selected samples: pure $\mathrm{MnV}_{2} \mathrm{O}_{6}(X=0, Y=0),(X=30, Y=$ $0),(X=30, Y=30)$, and ($X=20, Y=80$). As will be shown below (cf. Fig. 3), in Xray analysis all these samples exhibit the presence of only one brannerite-type phase, and thus all of them belong to the stability of MLØ.

An elemental analysis of the quoted samples, performed after final thermal treatment, has shown that all of them have the assumed stoichiometry, corresponding to the formula (1), within the error of analytical methods. This indicates that there was no loss of components in the course of heating. Let us remark that formulas (2) and (3) are richer in manganese (by $x \mathrm{Mn}$) as compared to (1). If solid solutions of (2)- or (3)type had been formed in a mixture of composition (1), some of lithium, vanadium, and molybdenum should remain unconsumed in the form of simple oxides or salts. Simple stoichiometric calculations show that, e.g., sample ($X=20, Y=60$) would contain 51.3 weight\% of phase (3), 1.8% of $\mathrm{Li}_{2} \mathrm{O}, 18.1 \%$ of $\mathrm{V}_{2} \mathrm{O}_{5}$, and 28.7% of MoO_{3}. X-ray phase analysis clearly demonstrates that this is not the case, as the above-mentioned quantities markedly exceed the detectability limit of the method.

Figure 2 shows the results of magnetic measurements performed for four samples under discussion. $1 / \chi$ vs T plots are linear, proving that the Curie-Weiss law is obeyed. The effective magnetic moment of Mn^{2+} ions, calculated on the assumption that formula (1) is valid, is practically the same for all four samples, and is equal to $5.65 \pm 0.1 \mu_{\mathrm{B}}$. The Weiss constant decreases along the series from 33 to 13 K , which may be due to the diminishing average distance between adjacent $\mathbf{M n}^{2+}$ ions and the diminishing interactions between them. Let us remark that formulas (2) and (3) are richer in paramagnetic ions than (1) by $\left(x \mathbf{M n}^{2+}+2 x \mathbf{M o}^{5+}\right)$ or $\left(x \overline{M n}^{2+}+2 x \mathrm{~V}^{4+}\right)$, respectively. If solid solutions of (2) or (3)

Fig. 2. Magnetic susceptibility of $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and $\mathrm{ML} \emptyset$ solid solutions as function of temperature. (1) $\mathrm{MnV}_{2} \mathrm{O}_{6}, 5.65 \mu_{\mathrm{B}} \theta=33 \mathrm{~K}$, (2) $(X=30, Y=0), 5.55 \mu_{\mathrm{B}}, \theta=31 \mathrm{~K}$, (3) $\left(X=30, Y=30\right.$), $5.56 \mu_{\mathrm{B}}, \theta=17$ $\mathrm{K},(4)(X=20, Y=60), 5.75 \mu_{\mathrm{B}}, \theta=13 \mathrm{~K}$.
type were formed in a mixture of composition (1), the apparent magnetic moment of $\mathbf{M n}^{2+}$ calculated as for solution (1) should increase along the studied series of samples. Assuming, for instance, that solution (3) is formed, $\mu_{\mathrm{Mn}^{2+}}=5.65 \mu_{\mathrm{B}}, \mu_{\mathrm{V}^{4+}}=2 \mu_{\mathrm{B}}$ (3), and neglecting small changes in Weiss constant, one can estimate this apparent moment to be $5.65 \mu_{\mathrm{B}}$ for ($X=0, Y=0$), $5.86 \mu_{\mathrm{B}}$ for ($X=30, Y=0$), $5.95 \mu_{\mathrm{B}}$ for (X $=30, Y=30$), and $5.99 \mu_{\mathrm{B}}$ for ($X=20, Y=$ 60). The above effect is not observed experimentally. It is true that the expected differences in apparent $\mu_{\mathrm{Mn}^{2}}$ are rather small but they clearly exceed the possible experimental error ($0.1 \mu_{\mathrm{B}}$).
The experimental results discussed in this paragraph, and especially those of elemental analysis combined with X-ray phase
analysis, prove that formula (1) is valid as a description of MLØ solid solutions.

(ii) X-ray Studies

Figure 3 presents the subsolidus portion of the pseudo-ternary $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-$ MoO_{3} phase diagram, as determined with X-ray phase analyses performed at room temperature (some details included in Fig. 3 and based on DTA will be explained in the next paragraph of the paper). As is seen, the range of stability of ML \emptyset solid solutions of α (i.e., of brannerite-type) structure extends over about 50% of the triangular surface. Its other part corresponds to the coexistence of α-ML \emptyset and MoO_{3}. The $K_{1} K_{2}$ line in Fig. 3 should be treated as indicating the composition of saturated solid

Fig. 4. Unit cell parameters vs Y in the $\mathrm{Mn}_{1-,} \mathrm{Li}_{3} \mathrm{~V}_{2-,} \mathrm{Mo}_{3} \mathrm{O}_{6}$ solid solutions (i.e., along the $\mathrm{MnV}_{2} \mathrm{O}_{6}-$ LiVMoO_{6} arm of the diagram). Confidence intervals are marked in the figure. They are $\pm 0.001- \pm 0.003$ \AA for a, b, c, and $c \sin \beta, \pm 0.01- \pm 0.02$ deg for $\beta, \pm 0.2- \pm 0.3$ for V.
equal to about $1.85 \AA,{ }^{1}$ i.e., less than the sum of the ionic radii. VO_{6} octahedra of the adjacent chains share edges, thus forming anionic sheets parallel to the (001) plane. The V-O bonds forming the double V-OV bridges along the a axis form alternating bonds of about 1.7 and $2.7 \AA$, which indicates that the structure is much more loosely packed in the a direction than in the b direction. The A atoms are situated between anionic sheets in $A O_{6}$ octahedra forming chains paralleling the b axis, and not linked to one another. One thus expects that substitution of the larger Mo^{6+} ion for the smaller $\mathrm{V}^{\mathrm{S}+}$ ion should primarily give

[^1]rise to an increase of parameter b, corresponding to the direction of tight packing, while substitution of the smaller Li^{1+} for the larger Mn^{2+} ion should cause a decrease of parameter c and $c \sin \beta$, indicating the distance between the anionic sheets in the structure. The relative proportions of the above quoted ionic radii,
\[

$$
\begin{aligned}
& \frac{r_{\mathrm{M}_{0} 6+}-r_{\mathrm{V}^{5+}}}{r_{\mathrm{v}^{5+}}}=11.1 \% \\
& \frac{r_{\mathrm{Li}^{1+}}-r_{\mathrm{Mn}^{2+}}}{r_{\mathrm{Mn}^{2+}}}=-7.5 \%
\end{aligned}
$$
\]

suggest that the first effect should be more important, which is, in fact, observed experimentally. For the same reason, the volume of unit cell increases on passing from $\mathrm{MnV}_{2} \mathrm{O}_{6}$ to LiVMoO_{6}, but less so than the parameter b. As for a, the opposing effects

Fig. 5. Temperature-composition diagrams for $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ and $\mathrm{LiVMoO} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ systems. Open points indicate DTA, full points indicate high temperature X-ray analysis.
of the two kinds of simultaneous substitutions closely compensate one another.

(iii) Phase Diagram

The phase diagram of the pseudo-binary system $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ has been already determined in (1), and is recalled in Fig.

5(a). In the present investigations, based on DTA and high temperature X-ray analyses, temperature-composition diagrams are constructed for the pseudo-binary systems $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}$ and $\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$, as well as for the arbitrary slices $A-A, B-B$, $C-C, D-D$, and $E-E$ indicated in Fig. 3.

Fig. 6. Temperature-composition diagrams for $A-A, B-B$, and $C-C$ slices of the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiV}$ $\mathrm{MoO}_{6}-\mathrm{MoO}_{3}$ system (cf. Fig. 3). Open points indicate DTA.

Fig. 7. Temperature-composition diagrams for the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}$ system and for $D-D$ and $E-$ E slices of the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ system (cf. Fig. 3). Open points indicate DTA, full points indicate high temperature X-ray analysis.

The results are presented in Figs. 5-7. They permit one to understand the shape of the whole pseudo-ternary $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiV}$ $\mathrm{MoO}_{6}-\mathrm{MoO}_{3}$ diagram and, in particular, to determine (i) the upper temperature limit of stability of α-MLØ (Fig. 3), and (ii) the liquidus surfaces with isotherms (Fig. 8). Each isotherm is based at least on three experimental points, and in their determination, the DTA of samples lying outside of the slices shown in Figs. 5-7 are also used.
In describing the pseudo-ternary $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ phase diagram it will be useful to take advantage of the previously studied $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and $\mathrm{MnV}_{2} \mathrm{O}_{6}-$ MoO_{3} system (Fig. 5(a)) as a reference. As already discussed in (1), $\mathrm{MnV}_{2} \mathrm{O}_{6}$ is known to undergo a reversible phase transformation at $R(0,0,540) .{ }^{2}$ The low temperature α modification crystallizes in the brannerite type, while the structure of the high temperature β polymorph is not known (nonin-

[^2]dexed powder X-ray pattern are presented in (I)). At $P^{\prime \prime \prime}(0,0,825), \beta-\mathrm{MnV}_{2} \mathrm{O}_{6}$ melts incongruently, decomposing to $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and liquid. The liquidus line in the $\mathrm{MnO}-\mathrm{V}_{2} \mathrm{O}_{5}$ system, over $\mathrm{MnV}_{2} \mathrm{O}_{6}$, is attained at $\mathbf{M}^{\prime}(0,0,935)$.

On doping $\mathrm{MnV}_{2} \mathrm{O}_{6}$ with MoO_{3}, solid solutions $\mathrm{M} \varnothing$ are formed in both α and β modifications of $\mathrm{MnV}_{2} \mathrm{O}_{6}$. The extent of solid solubility in $\beta-\mathrm{MnV}_{2} \mathrm{O}_{6}$ is very small and attains its largest value at $G_{1}(4,0,650)$. Contrarywise, the region of $\alpha-\mathrm{M} \emptyset$ extends up to $K_{1}(45,0,583)$. In between there is an area of coexistence of $\alpha-\mathrm{M} \varnothing$ and β-M \varnothing of different molybdena content, bordered by the "triangle" $R(0,0,540) G_{1}(4,0,650)$ $H_{1}(20,0,650)$. Doping stabilizes α-MØ against the $\alpha \rightarrow \beta$ transformation. At $H_{1}(20,0,650), \alpha-\mathrm{M} \emptyset$ revealing the highest thermal stability among α-type solutions melts incongruently, decomposing to β-M \varnothing and liquid, represented by $G_{1}(4,0,650)$ and $P_{1}^{\prime}(37,0,650)$, respectively. Between 650 and $760^{\circ} \mathrm{C}$ one deals with a coexistence of slightly defective β-M $\emptyset \quad G_{1}(4,0,650)$ $P^{\prime \prime \prime}(0,0,825)$, and liquid $P_{1}^{\prime}(37,0,650)$

Fig. 8. Liquidus surfaces of the $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ system. (a) Outline of the shape of liquidus; (b) projection based on DTA (cf. Figs. 5-7), with marked crystallization fields, and isotherms drawn every $20^{\circ} \mathrm{C}$.
$P_{1}^{\prime \prime}(22,0,760)$. At $760^{\circ} \mathrm{C}$ one enters the three phase area $\beta-\mathrm{M} \emptyset+\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+$ liquid, and then the two phase area $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+$ liquid, wherein the composition of liquids changes along lines localized in the space of T_{-} $\mathrm{MnO}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ diagram, $P_{1}^{\prime \prime}(22,0,760)$ $P^{\prime \prime \prime}(0,0,825)$ and $P_{1}^{\prime \prime}(22,0,760) M^{\prime}(0,0,935)$, these being their projections on the T $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ plane, respectively (1). At higher MoO_{3} content one eutectic appears in the system, where liquid represented by $E_{1}(60,0,583)$ remains in equilibrium with MoO_{3} and $\alpha-\mathrm{M} \emptyset$, corresponding to $K_{1}(45,0,583) . P_{1}^{\prime}(37,0,650) E_{1}(60,0,583)$ and $E_{1}(60,0,583) M^{\prime \prime}(100,0,795)$ lines constitute the liquidus in this part of the diagram. MoO_{3} melts at $M^{\prime \prime}(100,0,795)$.

All the above-mentioned features of the flat $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ diagram
are continued in the space of the $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ diagram in which α-ML \emptyset and β-ML \emptyset solid solutions appear. The space of β-MLØ (Fig. 3) is bordered by two deformed conic-like surfaces extending between $R(0,0,540)$, $P^{\prime \prime \prime}(0,0,825)$ and a line which climbs from $G_{1}(4,0,650)$ to $G_{2}(0,4,710)$, the last point lying on the $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}$ wall of the diagram (Fig. 7(a)). The tenative projection of the $G_{1} G_{2}$ line is shown in Fig. 3(b).

The space of α-ML \emptyset (Fig. 3) expanding over about 50% of the basal composition triangle is covered with a "tent" built of two surfaces. The first extends between $R(0,0,540)$ and a line joining $H_{1}(20,0,650)$ with $H_{2}(0,25,710)$, the last point lying on the $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}$ wall of the diagram. The second extends between $H_{1} H_{2}$
and $K_{1}(45,0,583) K_{2}(16,84,615)$, the last point lying on the $T-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ wall. The melting point of LiVMoO_{6}, $M^{\prime \prime \prime}(0,100,651)$, also belongs to the second of the quoted surfaces. Projections of $\mathrm{H}_{1} \mathrm{H}_{2}$ and $K_{1} K_{2}$ are included in Fig. 3 and the original data in T-composition coordinates (for lateral and intermediary points of the discussed lines) may be found in Figs. 5-7.

The space of coexistence of α-ML \emptyset and MoO_{3} (Fig. 5(a,b)) is covered with a surface consisting of the $K_{1}(45,0,583) W_{1}(100,0,583)$ line and the $K_{2}(16,84,615) W_{2}(100,0,615)$ line. The temperature dependence of the boundary between α-ML \emptyset and α-ML $\emptyset+$ MoO_{3} spaces has not been exactly determined in this study. However, as the DTA patterns of samples lying near the boundary (see the respective slices in Fig. 6) agree with their phase composition at room temperature, one may conclude that this boundary is nearly vertical, especially in the vicinity of the $T-\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ wall.

The shape of liquidus of the system is shown in Fig. 8. It is composed of four surfaces extending between the
(i) $\quad M^{\prime}(0,0,935) \quad$ and $\quad P_{1}^{\prime \prime}(22,0,760)$ $P_{2}^{\prime \prime}(0,20,785)$ line,
(ii) $P_{1}^{\prime \prime} P_{2}^{\prime \prime}$ and $P_{1}^{\prime}(37,0,650) P_{2}^{\prime}(0,50,710)$ lines,
(iii) $P_{1}^{\prime} P_{2}^{\prime}$ and $E_{1}(60,0,583) E_{2}(40,60,615)$ lines, and
(iv) $E_{1} E_{2}$ line and $M^{\prime \prime}(100,0,795)$ point.

The respective projections are shown in Fig. 8; the original data may be found in Figs. 5-7, as explained in detail for the solidus surfaces. It should be stressed that in analogy to the previously described T $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ diagram, the first of the above-mentioned liquidus surfaces does not reflect the real compositon of liquid (it is a type of "projection" from the four-dimensional space), and that below it an additional surface exists (of the same character) between the $P^{\prime \prime \prime}(0,0,825)$ point and the $P_{1}^{\prime \prime}(22,0,760) P_{2}^{\prime \prime}(0,20,785)$ line. The last mentioned surface borders on the spaces of
$\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+$ liquid and $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}+\beta-\mathrm{ML} \emptyset$ + liquid.

Finally, one may conclude that the pseudo-binary T - $\mathrm{LiVMoO}_{6}-\mathrm{MoO}_{3}$ diagram is the natural subdiagram of the ternary T $\mathrm{Li}_{2} \mathrm{O}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ or quaternary $T-\mathrm{MnO}-$ $\mathrm{Li}_{2} \mathrm{O}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{MoO}_{3}$ diagrams in the whole range of temperature and composition. All tie lines are comprised in its plane, and thus all phase interactions and phase relations may be as easily deduced as for the true binary system. The same is true of the bidimensional $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{MoO}_{3}$ and T $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}$ diagrams, and for the three-dimensional $T-\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiVMoO}_{6}-$ MoO_{3} diagram, but only below $760-785^{\circ} \mathrm{C}$. Above these temperatures $\mathrm{Mn}_{2} \mathrm{~V}_{2} \mathrm{O}_{7}$ and liquid appear in the systems, the compositions of which cannot be expressed on their composition scales, as the respective tie lines pierce the planes or the space of the diagrams.

The outstanding feature of the phase diagram of the pseudo-ternary $\mathrm{MnV}_{2} \mathrm{O}_{6}-\mathrm{LiV}$ $\mathrm{MoO}_{6}-\mathrm{MoO}_{3}$ system is the very large range of stability of quatcrnary solid solution α -$\mathrm{Mn}_{1-x-y} \mathrm{Li}_{y} \emptyset_{x} \mathrm{~V}_{2-2 x-y} \mathrm{Mo}_{2 x+y} \mathrm{O}_{6}$, in which y may vary between 0 and 1 , and x between 0 and $x_{\text {max }}\left(0.16 \leq x_{\text {max }} \leq 0.45\right)$, depending on y. The hypothesis as stated in the Introduction has thus been proved.

Acknowledgment

We are indebted to Dr. Roman Kozlowski who kindly pointed out to us the use of the citrate precursor method, and who performed some of the first syntheses of $M \varnothing$ solid solutions with this method.

References

1. R. Kozlowski, J. Ziókowski, K. Mocata, and J. Haber, J. Solid State Chem. 35, 1 (1980); Erratum 38, 138 (1981).
2. J. Ziókowski, R. Kozzowski, K. Mocaza, and J. Haber, J. Solid State Chem. 35, 297 (1980).
3. T. Machej, R. Koztowski, and J. Ziókowski, J. Solid State Chem. 38, 97 (1981).
4. R. Koztowski and K. Stadnicka, J. Solid State Chem. 39, 271 (1981).
5. B. Darriet and J. Galy, Bull. Soc. Fr. Mineral. Crystallogr. 91, 325 (1968).
6. J. Galy, J. Darriet, and B. Darriet, C.R. Acad. Sci. Ser. C 264, 1477 (1967).
7. P. Courty, H. Ajot, and C. Marcilly, Powder Technol. 7, 21 (1973).
8. Joint Committee on Powder Diffraction Standards 1973, 5-508, 5-661, 9-387.
9. L. Dziembaj and J. Ziotkowski, Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20, 725 (1972).
10. T. Machej and J. Ziotkowski, J. Solid State Chem. 31, 135 (1980).
11. N. F. Curtis, J. Chem. Soc., 3147 (1961).
12. P. W. Selwood, "Magnetochemistry," Interscience, New York/London (1956).
13. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B25, 925 (1969).
14. H. N. Ng and C. Calvo, Canad. J. Chem. 50, 3619 (1972).
15. C. Calvo and D. Manolescu, Acta Crystallogr. B29, 1743 (1973).
16. J. Angenallt, Rev. Chem. Mineral. 7, 651 (1970).
17. E. E. Sauerbrei, M.S. Thesis, McMaster University, Ontario, Canada, (1972).
18. J.-C. Bouloux and J. Galy, Bull. Soc. Chim. Fr., 736 (1969).
19. J. Ziókowski, J. Catal. 80, 263 (1983).

[^0]: * To whom all correspondence should be addressed.

[^1]: ${ }^{1}$ The structures of $\mathrm{MnV}_{2} \mathrm{O}_{6}$ and LiVMoO_{6} have never been resolved, but a series of papers (5, 14-19) indicates that the sets of $\mathrm{V}-\mathrm{O}$ distances in VO_{6} groups of various vanadates crystallizing in the brannerite type are practically the same.

[^2]: ${ }^{2}$ All particularly interesting points in the diagram are characterized, (in parentheses) by three coordinates: X, Y, and T in ${ }^{\circ} C$.

